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Abstract 

The purpose of this article is to study the quasi-conformal maps and to be 

able to demonstrate lemme1 in order to prepare proof of a theorem in a 

next article. 

1. Introduction 

Suppose that G is a bilipschitz (i.e., quasi-isometric) map of n dimensional 

hyperbolic space n
HH =  onto itself. We may get such a map, for example, when 

,2=n  by starting with a bilipschitz map of compact surfaces 21: Σ→ΣF  of 

genus 2≥  equipped with curvature –1 metrics. Then, since H  is the universal cover 

of both 1Σ  and ,2Σ  the surface map F lifts to a bilipschitz map of H  to itself. 

Using the Poincaré disk model 

( ) ,1, 222






 − −

dxxn
B  

we see that a bilipschitz G will extend continuously to the (ideal) boundary sphere 
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HSS ∂== −1n  at .∞  However, here the boundary map SGg =  will not 

necessarily be Lipschitz. In fact, it almost never is for lifts of surface maps. However, 

it is quasi-conformal for 3≥n  and quasi-symmetric for .2=n  A homeomorphism 

SS →:g  is quasi-conformal (quasi-symmetric) if 

( ) ( ) ( )

( ) ( ) ( )
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In the quasi-symmetric case with ,
1
CSS ⊂=  this simply says that the distance 

ratios 

( ) ( )

( ) ( )zgzeg
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are bounded above and below independent of 1
S∈z  and .R∈θ  Note that 

bilipschitz maps are automatically quasi-conformal (quasi-symmetric). However, for 

regularity, quasi-conformal (quasi-symmetric) maps are generally only Hölder 

continuous to some power less than 1 depending on .gΛ  

Conversely to the above discussion, Beurling and Ahlfors [4], Douady and Earle 

[6], and Tam and Wan [12] proved that any quasi-conformal (quasi-symmetric) map 

of S  admits a continuous extension to H  that is bilipschitz on .H  These results 

suggested the following question by Royden and others.  

Does any quasi-conformal (quasi-symmetric) map g of S  admit a harmonic map 

extension to ?H  

While the general problem is still open, harmonic extensions were first 

constructed by P. Li and L.-F. Tam [10], [11] under some assumptions on 

smoothness of g and a pointwise lower bound on the g∇  (see also Akutagawa [1]). 

Some non-uniqueness examples were found by Wolf [14] and Li and Tam [10], [11]. 

Harmonic self-maps of 2
H  were studied via their Hopf differentials by Tukia and 

Väisälä [13]. A few years ago, we worked out the following result [8] (see also 

different, independent recent proofs by Deane Yang [15]). 
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Theorem 1. The set of all quasi-conformal (quasi-symmetric) maps of S  

admitting an extension to a bilipschitz harmonic map of H  is open. 

(Here, we say that a sequence ggi →  if ).11 →Λ −
ggi o

 

Corollary 1. All quasi-conformal (quasi-symmetric) maps of S  near the identity 

are harmonically extendible. 

For the case ,2=n  this Corollary was obtained several years ago by C. Earle 

and S. Fowler [7] using implicit function theorem methods. Proof of Theorem. (For 

details, see [8]) We start with a bilipschitz harmonic map HHH →:0  and 

consider small quasi-conformal (quasi-symmetric) perturbations of the boundary map 

.00 SH≡h  Specifically, we will consider, for ,0>δ  a map sgg =  with 

.1
0

δ≤Λ −
hg o

 Using one of the constructions of [2], [4], [6] or [12], we extend 

1
0
−hg o  to a map δ= FF  of H  with 

( ) ( ),sup,sup δε=ε≤−+ dFIdFIdd
HH

 (1) 

where ( ) ( )..,.., Hdistd =  and here, and in the following, ( )δε  will denote some 

(changing) positive function of δ which approaches 0 as .0δ  Then, 

0HFGG o≡= δ  

is a bilipschitz extension of g that is bilipschitz close (as in (1)) to .0H  Our goal is to 

obtain, for small δ  a bilipschitz extension H of g which is also harmonic, that is, has 

tension 

( ) .0=τ H  

We first observe that, in addition to (1), we may also assume that 

F  is  2
C   and  ( ) ( ).δε=ε≤τ F   (2) 

To see this, we may, for example, divide H  into compact isometric                          

n-dimensional blocks, as in a standard dyadic decomposition of the upper half space 

model with totally geodesic faces. For any one such block B we may, by (1), 

associate a hyperbolic isometric BF  so that, for all ,Bb ∈  
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( ) ( )( ) ( ) ( ) ( )., δε=ε≤−+ bBbB dFdFbFbFd  

On a fixed-size η  tubular neighborhood of 1−n  skeleton we may locally 

smoothly interpolate between the isometries associated with the blocks of the 

adjacent faces. One may do this by inductively crossing the ,1−n  then 0...,,2−n  

cells. One eventually gets the smooth map HH →:
~
F  satisfying ( ) n

CF ηε<τ
~

 

and replace F by F
~

 to get (2). 

Since 0H  is harmonic and bilipschitz, it now follows from (1) and (2) that 

( ) ( ) ( )δε=ε≤τ=τ 0HFG o  (3) 

and 

( ) ( )( ) ( ),1min 0
1

HvdG
v

µδε−≥
=

  (4) 

where ( ) ( ) .min 0
1

0 vdHH
v =

=µ  

To find the desired harmonic H, we consider integer radius balls ...,, 21 BB  

about some fixed point in H  and use [8] to choose, for each ...,,2,1=m  a 

harmonic map 

HB →mmH :     with      GHm =   on  .mB∂  

We want to show that for δ  sufficiently small, mH  converges as ∞→m  to the 

desired H. We use the following: 

Lemma 1. If S and T are two nowhere-coinciding 
2
C  maps from a region  

H⊂Ω  to ,H  then the function 

( ) ( )( ) 1.,.cosh −≡ TSdQ  

satisfies 

( ) ( ) ( ) ( )( ) ( ).,sinhminmin
2

1

2

1
TSdTSvdTvdSQQ

vv
τ+τ−


















+




≥∆
==

 (5) 
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The proof is a calculation which we will sketch later. For now, we use the 

Lemma to complete the proof of the Theorem. 

Defining ( ) ,1,cosh −= mm HGdQ  we deduce from (3), (4), (5), and the 

harmonicity of mH  that 

( )( )( ) ( ) ( )( )1,tanh0010 −+ε−+ε−µ≥∆ mmmm QHGdHQQ  

on .mB  Since mQ  vanishes on ,mB∂  there a maximum point ma B∈  for .mQ  

Unless ,0≡mQ  we have there that 

( ) ( )( )( ) ( ) ,10 0 ε−ε−ε−µ≥∆≥ aQHaQ mm  

hence 

( )
( )( )

,
1

sup
0

∞<
ε−ε−µ

ε
≤=

H
aQQ mm

mB

 

independent of m. In any case, since G is Lipschitz, the diameter of the image 

( )BHm  of any unit ball in B in mB  is uniformly bounded, independent of m. The 

gradient estimate of Cheng [5] and Baird and Kamissoko [3] Lemma 2.1 then gives 

the bound 

( ) ,,sup 0
1

∞<δ=≤∇
−

HCCHm
mB

 

independent of m. The Ascoli-Arzela theorem allows us to find a subsequence of 

mH  converging uniformly on compacts to a harmonic map HH →:H  which is 

still at bounded distance from G. It follows that H has the same asymptotic boundary 

values as G, that is, ,gGH == SS  which completes the proof of the theorem. ~ 

Sketch of proof of Lemma. First, we compute for a 2
C  map NMw →:  of 

Riemannian manifolds and a smooth function ,: R→Nf  the pointwise formula 

 ( ) { } ( ) ,,
New wfHessftrwf τ∇+=∆

α∗o   (6) 

where the trace of the Riemannian Hessiaan is taken with respect to the push-forward 

{ }α∗ ew  of an orthonormal frame { }.αe  
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For each point ,Ω∈x  we choose an orthonormal basis { }nσσ ...,,1  of ( )xSTan  

so that 1σ  is the initial velocity of the geodesic γ  going from ( )xS  to ( ).xT  Then 

we parallel translate along γ  to get the basis { }nττ ...,,1  of ( ).xTTan  With respect 

to the basis ( ) ( ) ( ) ( )nn ττσσ ,0...,,,0,0,...,,0, 11  of ( ) ( ),xSxS TanTan ×  

( ) ( ) ( )( )xTxSdHess ,cosh  is represented by the matrix 

( ) ,
~

cosh 22 AIddA nn +≡ ×  

where A
~

 has only nonzero entries dcosh−  at ( ) ( )( )11 ,0,0, τσ  and 

( ) ( )( )0,,,0 11 στ   and –1 at ( ) ( )( )ii τσ ,0,0,  and ( ) ( )( )0,,,0 ii στ  for ....,,2 ni =  

So, by (6) with ( )TSw ,=  and ,cosh df =  

( ) ( )[ ]∑ ∑
α

αα ττ+σσ=∆ ,,,

i

iiii edTedSAQ  

( ) ( )[ ] ( ) ( )( )( )TS

i

iiii TSQedTedS ,,,,, ττ∇+ττ+σσ∑ αα  

( )( )2
11 ,,cosh τ∇−σ∇= TSd  

( ) ( ) ( ) ( )( )( )TSii

n

i

TSQTSd ,
22

2

,,,,1cosh ττ∇+τ∇+σ∇−+ ∑
=

 

( ) ( ) ( ) ( )( ),,sinh0,0
2

2

TSTSdSQ i

n

i

τ+τ−+σ∇+≥ ∑
=

 

where 1, σ∇S  refers to the component of ( )∑ αa
edS  in the direction ,1σ  etc. The 

last inequality clearly implies inequality (5). ~ 
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