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Abstract

The purpose of this article is to study the quasi-conformal maps and to be
able to demonstrate lemmel in order to prepare proof of a theorem in a

next article.

1. Introduction

Suppose that G is a bilipschitz (i.e., quasi-isometric) map of n dimensional

hyperbolic space H = H" onto itself. We may get such a map, for example, when

n =2, by starting with a bilipschitz map of compact surfaces F :X; — X, of

genus > 2 equipped with curvature —1 metrics. Then, since H is the universal cover

of both X; and X,, the surface map F lifts to a bilipschitz map of H to itself.

Using the Poincaré disk model
(IB%”, (1-|x? )‘de2),

we see that a bilipschitz G will extend continuously to the (ideal) boundary sphere
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S=8""!=0H at . However, here the boundary map g =G|S will not
necessarily be Lipschitz. In fact, it almost never is for lifts of surface maps. However,
it is quasi-conformal for n 2 3 and quasi-symmetric for n = 2. A homeomorphism

g 'S — S is quasi-conformal (quasi-symmetric) if

su (x) - g(y)
A, = suplimsup Pyesnam, (| s - M|
ves b0 infesnam, (v &(x) = g(¥)]

In the quasi-symmetric case with S = s! « C, this simply says that the distance

ratios

| 2(2) - g(ze™)|
| 8(ze™) - g(2)]

are bounded above and below independent of z e S! and 6 R. Note that
bilipschitz maps are automatically quasi-conformal (quasi-symmetric). However, for
regularity, quasi-conformal (quasi-symmetric) maps are generally only Holder

continuous to some power less than 1 depending on A .

Conversely to the above discussion, Beurling and Ahlfors [4], Douady and Earle
[6], and Tam and Wan [12] proved that any quasi-conformal (quasi-symmetric) map
of S admits a continuous extension to H that is bilipschitz on H. These results

suggested the following question by Royden and others.

Does any quasi-conformal (quasi-symmetric) map g of S admit a harmonic map

extension to H ?

While the general problem is still open, harmonic extensions were first
constructed by P. Li and L.-F. Tam [10], [11] under some assumptions on

smoothness of g and a pointwise lower bound on the V, (see also Akutagawa [1]).
Some non-uniqueness examples were found by Wolf [14] and Li and Tam [10], [11].

Harmonic self-maps of H? were studied via their Hopf differentials by Tukia and
Viisdld [13]. A few years ago, we worked out the following result [8] (see also

different, independent recent proofs by Deane Yang [15]).
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Theorem 1. The set of all quasi-conformal (quasi-symmetric) maps of S

admitting an extension to a bilipschitz harmonic map of H is open.

(Here, we say that a sequence g; — g if Angg‘l —1).
1

Corollary 1. All quasi-conformal (quasi-symmetric) maps of S near the identity

are harmonically extendible.

For the case n = 2, this Corollary was obtained several years ago by C. Earle
and S. Fowler [7] using implicit function theorem methods. Proof of Theorem. (For

details, see [8]) We start with a bilipschitz harmonic map H : H — H and

consider small quasi-conformal (quasi-symmetric) perturbations of the boundary map

hy = Hg|S. Specifically, we will consider, for § >0, a map g =g, with

Ago ! < 9. Using one of the constructions of [2], [4], [6] or [12], we extend

goha1 toamap F = Fg of H with

supd(ld, F)+sup| Id — dF | < & = (), (1)
H H

where d(.,.) = distyy(,, .) and here, and in the following, €(8) will denote some
(changing) positive function of & which approaches 0 as & | 0. Then,

G =Gs =F o Hy

is a bilipschitz extension of g that is bilipschitz close (as in (1)) to H. Our goal is to

obtain, for small & a bilipschitz extension H of g which is also harmonic, that is, has

tension
©(H) = 0.
We first observe that, in addition to (1), we may also assume that
Fis C? and 1(F)<e =¢(3). 2)

To see this, we may, for example, divide H into compact isometric
n-dimensional blocks, as in a standard dyadic decomposition of the upper half space
model with totally geodesic faces. For any one such block B we may, by (1),

associate a hyperbolic isometric Fp so that, for all b € B,
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d(F(b), Fg(b)) +| (dF), — (dFp),| < € = &(3).

On a fixed-size m tubular neighborhood of n —1 skeleton we may locally

smoothly interpolate between the isometries associated with the blocks of the

adjacent faces. One may do this by inductively crossing the n—1, then n -2, ..., 0
cells. One eventually gets the smooth map F:H-H satisfying " o(F ) " <Ce/n"
and replace F' by F to get (2).
Since H( is harmonic and bilipschitz, it now follows from (1) and (2) that
U(G) = 1(F o Hy) < € = &(d) 3)
and

\rﬁi:nll dG(v)| 2 (1-&(8))u(Hy), “)
where W(H) = ‘111‘1:111| dHy(v)|.

To find the desired harmonic H, we consider integer radius balls B, B,, ...
about some fixed point in H and use [8] to choose, for each m=1,2, ..., a

harmonic map
H,:B, >H with H, =G on JdB,,.

We want to show that for 8 sufficiently small, H,, converges as m — oo to the

desired H. We use the following:

Lemma 1. If S and T are two nowhere-coinciding @2 maps from a region

Q c H to H, then the function
O =coshd(S(), T()) -1

satisfies

2 2
AQ > Q([mjn dS(v)} + {minl dT(v)} J— (| (S)| +| o(T)|)sinh d(S, T).  (5)

vl=1 v]=
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The proof is a calculation which we will sketch later. For now, we use the

Lemma to complete the proof of the Theorem.

Defining Q,, = coshd(G, H,,)—1, we deduce from (3), (4), (5), and the

harmonicity of H,, that

AQ,, 2 Qm(“(HO)(l —€)+0)—(e+0)tanh d(G, Hm)(Qm -1)

on B,,. Since Q,, vanishes on dB,,, there a maximum point a € B,, for Q,,.

m>»

Unless Q,, = 0, we have there that

02 AQ,,(a) 2 (W(H)(1 - €) —€)Q,(a) - &
hence

€

Sume = Qm(a) S H(HO)(I_E)_S < o,

independent of m. In any case, since G is Lipschitz, the diameter of the image
H,, (B) of any unit ball in B in B,, is uniformly bounded, independent of m. The
gradient estimate of Cheng [5] and Baird and Kamissoko [3] Lemma 2.1 then gives
the bound

sup | VH,, | £ C = C(Hy, ) < oo,

m—1
independent of m. The Ascoli-Arzela theorem allows us to find a subsequence of

H,, converging uniformly on compacts to a harmonic map H : H — H which is

m
still at bounded distance from G. It follows that H has the same asymptotic boundary

values as G, that is, H | S=G | S = g, which completes the proof of the theorem. [J

Sketch of proof of Lemma. First, we compute for a c? map w: M — N of

Riemannian manifolds and a smooth function f : N — R, the pointwise formula
A(f o w) = tryue, Hessf + (Vf, W)y (6)

where the trace of the Riemannian Hessiaan is taken with respect to the push-forward

{w * ey } of an orthonormal frame {e, }.
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For each point x € Q, we choose an orthonormal basis {G, ..., 6, } of Tangy)

so that o; is the initial velocity of the geodesic y going from S(x) to T(x). Then

we parallel translate along y to get the basis {1y, ..., T,} of Tang(y). With respect
to the basis (o, 0),..,(0,,0),(0, 1), .., (0 1,) of Tang)xTang),
(Hess cosh d)gy) 7(y)) 18 represented by the matrix

A = (cosh d)Idy,s, + A,

where A has only nonzero entries —coshd at ((c,0), (0, 1)) and
((0, 1), (o4, 0)) and -1 at ((o;, 0), (0, t;)) and ((0, T;), (0;, 0)) for i =2, ..., n.
So, by (6) with w = (S, T) and f = coshd,

A0 = Z<AZ [(dS(eq). 6;)0; +(dT(eq). T;)T;].

ZKdS(ea), 0,;)0; +(dT(ey,), Ti>Ti]> + <VQ’ (e(S), «(T))s, T)>
= (cosh d)((VS, o;) — (VT, ’cl>)2

+ (cosh d - 1)Z(<VS, ;) +(VT, 7;)%) + <VQ’ (wS), (D)), T)>
i=2

>0+ QZ (VS. 6,)% +0) —sinh d(S, T)(| (S) | +| ©(T)|).
i=2

where (VS, o) refers to the component of Za dS(e,) in the direction Gy, etc. The

last inequality clearly implies inequality (5). O
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