

Pioneer Journal of Advances in Applied Mathematics Volume 25, Numbers 1-2, 2019, Pages 1-7/ This paper is available online on February 28, 2019 at http://www.pspchv.com/content_PJAAM.html

THE QUASI-SYMMETRIC MAPS

DANTOUMA KAMISSOKO

Département de Mathématiques Université de Bretagne Occidentale France

Abstract

The purpose of this article is to study the quasi-conformal maps and to be able to demonstrate lemme1 in order to prepare proof of a theorem in a next article.

1. Introduction

Suppose that *G* is a bilipschitz (i.e., quasi-isometric) map of *n* dimensional hyperbolic space $\mathbb{H} = \mathbb{H}^n$ onto itself. We may get such a map, for example, when n = 2, by starting with a bilipschitz map of compact surfaces $F : \Sigma_1 \to \Sigma_2$ of genus ≥ 2 equipped with curvature -1 metrics. Then, since \mathbb{H} is the universal cover of both Σ_1 and Σ_2 , the surface map *F* lifts to a bilipschitz map of \mathbb{H} to itself.

Using the Poincaré disk model

$$\left(\mathbb{B}^n, (1-|x|^2)^{-2} dx^2\right),$$

we see that a bilipschitz G will extend continuously to the (*ideal*) boundary sphere

Received February 6, 2019; Revised February 26, 2019

2010 Mathematics Subject Classification: 30C62, 30C70, 58E20.

Keywords and phrases: quasi-symmetric, geodesic, bilipschitz map, hyperbolic space, quasi-conformal.

© 2019 Pioneer Scientific Publisher

 $\mathbb{S} = \mathbb{S}^{n-1} = \partial \mathbb{H}$ at ∞ . However, here the boundary map $g = G | \mathbb{S}$ will not necessarily be Lipschitz. In fact, it almost never is for lifts of surface maps. However, it is *quasi-conformal* for $n \ge 3$ and *quasi-symmetric* for n = 2. A homeomorphism $g : \mathbb{S} \to \mathbb{S}$ is quasi-conformal (quasi-symmetric) if

$$\Lambda_g \equiv \sup_{x \in \mathbb{S}} \lim_{r \downarrow 0} \sup \frac{\sup_{y \in \mathbb{S} \cap \partial \mathbb{B}_r(x)} |g(x) - g(y)|}{\inf_{z \in \mathbb{S} \cap \partial \mathbb{B}_r(x)} |g(x) - g(y)|} < \infty$$

In the quasi-symmetric case with $\mathbb{S} = \mathbb{S}^1 \subset \mathbb{C}$, this simply says that the distance ratios

$$\frac{\left|g(z) - g(ze^{i\theta})\right|}{\left|g(ze^{-i\theta}) - g(z)\right|}$$

are bounded above and below independent of $z \in \mathbb{S}^1$ and $\theta \in \mathbb{R}$. Note that bilipschitz maps are automatically quasi-conformal (quasi-symmetric). However, for regularity, quasi-conformal (quasi-symmetric) maps are generally only Hölder continuous to some power less than 1 depending on Λ_g .

Conversely to the above discussion, Beurling and Ahlfors [4], Douady and Earle [6], and Tam and Wan [12] proved that any quasi-conformal (quasi-symmetric) map of S admits a continuous extension to \mathbb{H} that is bilipschitz on \mathbb{H} . These results suggested the following question by Royden and others.

Does any quasi-conformal (quasi-symmetric) map g of S admit a harmonic map extension to \mathbb{H} ?

While the general problem is still open, harmonic extensions were first constructed by P. Li and L.-F. Tam [10], [11] under some assumptions on smoothness of g and a pointwise lower bound on the ∇_g (see also Akutagawa [1]). Some non-uniqueness examples were found by Wolf [14] and Li and Tam [10], [11]. Harmonic self-maps of \mathbb{H}^2 were studied via their Hopf differentials by Tukia and Väisälä [13]. A few years ago, we worked out the following result [8] (see also different, independent recent proofs by Deane Yang [15]).

Theorem 1. The set of all quasi-conformal (quasi-symmetric) maps of S admitting an extension to a bilipschitz harmonic map of \mathbb{H} is open.

(Here, we say that a sequence $g_i \to g$ if $\Lambda_{g_i \circ g^{-1}} \to 1$).

Corollary 1. All quasi-conformal (quasi-symmetric) maps of S near the identity are harmonically extendible.

For the case n = 2, this Corollary was obtained several years ago by C. Earle and S. Fowler [7] using implicit function theorem methods. Proof of Theorem. (For details, see [8]) We start with a bilipschitz harmonic map $\mathbb{H}_0 : \mathbb{H} \to \mathbb{H}$ and consider small quasi-conformal (quasi-symmetric) perturbations of the boundary map $h_0 \equiv \mathbb{H}_0 | \mathbb{S}$. Specifically, we will consider, for $\delta > 0$, a map $g = g_s$ with $\Lambda_{g \circ h_0^{-1}} \leq \delta$. Using one of the constructions of [2], [4], [6] or [12], we extend $g \circ h_0^{-1}$ to a map $F = F_{\delta}$ of \mathbb{H} with

$$\sup_{\mathbb{H}} d(Id, F) + \sup_{\mathbb{H}} || Id - dF || \le \varepsilon = \varepsilon(\delta),$$
(1)

where $d(., .) = dist_{\mathbb{H}}(., .)$ and here, and in the following, $\varepsilon(\delta)$ will denote some (changing) positive function of δ which approaches 0 as $\delta \mid 0$. Then,

$$G = G_{\delta} \equiv F \circ H_0$$

is a bilipschitz extension of g that is bilipschitz close (as in (1)) to H_0 . Our goal is to obtain, for small δ a bilipschitz extension H of g which is also harmonic, that is, has tension

$$\tau(H)=0.$$

We first observe that, in addition to (1), we may also assume that

$$F \text{ is } \mathcal{C}^2 \text{ and } \tau(F) \le \varepsilon = \varepsilon(\delta).$$
 (2)

To see this, we may, for example, divide \mathbb{H} into compact isometric *n*-dimensional blocks, as in a standard dyadic decomposition of the upper half space model with totally geodesic faces. For any one such block *B* we may, by (1), associate a hyperbolic isometric F_B so that, for all $b \in B$,

$$d(F(b), F_B(b)) + || (dF)_b - (dF_B)_b || \le \varepsilon = \varepsilon(\delta).$$

On a fixed-size η tubular neighborhood of n-1 skeleton we may locally smoothly interpolate between the isometries associated with the blocks of the adjacent faces. One may do this by inductively crossing the n-1, then n-2, ..., 0 cells. One eventually gets the smooth map $\tilde{F} : \mathbb{H} \to \mathbb{H}$ satisfying $\| \tau(\tilde{F}) \| < C\varepsilon / \eta^n$ and replace F by \tilde{F} to get (2).

Since H_0 is harmonic and bilipschitz, it now follows from (1) and (2) that

$$\tau(G) = \tau(F \circ H_0) \le \varepsilon = \varepsilon(\delta)$$
(3)

(4)

and

$$\min_{|\nu|=1} |dG(\nu)| \ge (1 - \varepsilon(\delta))\mu(H_0),$$

where $\mu(H_0) = \min_{|v|=1} |dH_0(v)|.$

To find the desired harmonic H, we consider integer radius balls \mathbb{B}_1 , \mathbb{B}_2 , ... about some fixed point in \mathbb{H} and use [8] to choose, for each m = 1, 2, ..., aharmonic map

$$H_m: \mathbb{B}_m \to \mathbb{H}$$
 with $H_m = G$ on $\partial \mathbb{B}_m$.

We want to show that for δ sufficiently small, H_m converges as $m \to \infty$ to the desired *H*. We use the following:

Lemma 1. If S and T are two nowhere-coinciding C^2 maps from a region $\Omega \subset \mathbb{H}$ to \mathbb{H} , then the function

$$Q \equiv \cosh d(S(.), T(.)) - 1$$

satisfies

$$\Delta Q \ge Q \left(\left[\min_{|\nu|=1} dS(\nu) \right]^2 + \left[\min_{|\nu|=1} dT(\nu) \right]^2 \right) - \left(|\tau(S)| + |\tau(T)| \right) \sinh d(S, T).$$
(5)

The proof is a calculation which we will sketch later. For now, we use the Lemma to complete the proof of the Theorem.

Defining $Q_m = \cosh d(G, H_m) - 1$, we deduce from (3), (4), (5), and the harmonicity of H_m that

$$\Delta Q_m \ge Q_m(\mu(H_0)(1-\varepsilon)+0) - (\varepsilon+0) \tanh d(G, H_m)(Q_m-1)$$

on \mathbb{B}_m . Since Q_m vanishes on $\partial \mathbb{B}_m$, there a maximum point $a \in \mathbb{B}_m$ for Q_m . Unless $Q_m \equiv 0$, we have there that

$$0 \ge \Delta Q_m(a) \ge (\mu(H_0)(1-\varepsilon)-\varepsilon)Q_m(a)-\varepsilon,$$

hence

$$\sup_{\mathbb{B}_m} Q_m = Q_m(a) \le \frac{\varepsilon}{\mu(H_0)(1-\varepsilon) - \varepsilon} < \infty,$$

independent of *m*. In any case, since *G* is Lipschitz, the diameter of the image $H_m(B)$ of any unit ball in *B* in \mathbb{B}_m is uniformly bounded, independent of *m*. The gradient estimate of Cheng [5] and Baird and Kamissoko [3] Lemma 2.1 then gives the bound

$$\sup_{\mathbb{B}_{m-1}} |\nabla H_m| \le C = C(H_0, \, \delta) < \infty,$$

independent of *m*. The Ascoli-Arzela theorem allows us to find a subsequence of H_m converging uniformly on compacts to a harmonic map $H : \mathbb{H} \to \mathbb{H}$ which is still at bounded distance from *G*. It follows that *H* has the same asymptotic boundary values as *G*, that is, $H \mid \mathbb{S} = G \mid \mathbb{S} = g$, which completes the proof of the theorem. \Box

Sketch of proof of Lemma. First, we compute for a \mathbb{C}^2 map $w: M \to N$ of Riemannian manifolds and a smooth function $f: N \to \mathbb{R}$, the pointwise formula

$$\Delta(f \circ w) = tr_{\{w \neq e_{\alpha}\}} Hessf + \langle \nabla f, \tau(w) \rangle_{N}, \tag{6}$$

where the trace of the Riemannian Hessiaan is taken with respect to the push-forward $\{w * e_{\alpha}\}$ of an orthonormal frame $\{e_{\alpha}\}$.

DANTOUMA KAMISSOKO

For each point $x \in \Omega$, we choose an orthonormal basis $\{\sigma_1, ..., \sigma_n\}$ of $Tan_{S(x)}$ so that σ_1 is the initial velocity of the geodesic γ going from S(x) to T(x). Then we parallel translate along γ to get the basis $\{\tau_1, ..., \tau_n\}$ of $Tan_{T(x)}$. With respect to the basis $(\sigma_1, 0), ..., (\sigma_n, 0), (0, \tau_1), ..., (0, \tau_n)$ of $Tan_{S(x)} \times Tan_{S(x)}$, $(Hess \cosh d)_{(S(x), T(x))}$ is represented by the matrix

$$A \equiv (\cosh d) Id_{2n \times 2n} + \tilde{A},$$

where \tilde{A} has only nonzero entries $-\cosh d$ at $((\sigma_1, 0), (0, \tau_1))$ and $((0, \tau_1), (\sigma_1, 0))$ and -1 at $((\sigma_i, 0), (0, \tau_i))$ and $((0, \tau_i), (\sigma_i, 0))$ for i = 2, ..., n. So, by (6) with w = (S, T) and $f = \cosh d$,

$$\begin{split} \Delta Q &= \sum_{\alpha} \left\langle A \sum_{i} \left[\langle dS(e_{\alpha}), \, \sigma_{i} \rangle \sigma_{i} + \langle dT(e_{\alpha}), \, \tau_{i} \rangle \tau_{i} \right], \\ &\sum_{i} \left[\langle dS(e_{\alpha}), \, \sigma_{i} \rangle \sigma_{i} + \langle dT(e_{\alpha}), \, \tau_{i} \rangle \tau_{i} \right] \right\rangle + \left\langle \nabla Q, \, (\tau(S), \, \tau(T))_{(S, T)} \right\rangle \\ &= (\cosh d) (\langle \nabla S, \, \sigma_{1} \rangle - \langle \nabla T, \, \tau_{1} \rangle)^{2} \\ &+ (\cosh d - 1) \sum_{i=2}^{n} \left(\langle \nabla S, \, \sigma_{i} \rangle^{2} + \langle \nabla T, \, \tau_{i} \rangle^{2} \right) + \left\langle \nabla Q, \, (\tau(S), \, \tau(T))_{(S, T)} \right\rangle \\ &\geq 0 + Q \sum_{i=2}^{n} \left(\langle \nabla S, \, \sigma_{i} \rangle^{2} + 0 \right) - \sinh d(S, T) (||\tau(S)| + ||\tau(T)|), \end{split}$$

where $\langle \nabla S, \sigma_1 \rangle$ refers to the component of $\sum_a dS(e_\alpha)$ in the direction σ_1 , etc. The last inequality clearly implies inequality (5).

References

 Kazuo Akutagawa, Harmonic diffeomorphisms of the hyperbolic plane, Trans. Amer. Math. Soc. 342(1) (1994), 325-342.

- Paul Baird, A class of three-dimensional Ricci solitons, Geometry and Topology 13(2) (2009), 979-1015.
- [3] Paul Baird and Dantouma Kamissoko, Unique continuation of semi-conformality for a harmonic mapping onto a surface, Manuscripta Math. 128(1) (2009), 69-75.
- [4] A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
- [5] Shiu Yuen Cheng, Liouville theorem for harmonic maps, Proc. Symp. Pure Math. 36 (1980), 147-151.
- [6] Adrien Douady and Clifford J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157(1-2) (1986), 23-48.
- [7] C. J. Earle and S. Fowler, Private communication.
- [8] Robert Hardt and Michael Wolf, Harmonic extensions of quasiconformal maps to hyperbolic space, Indiana Univ. Math. J. 46(1) (1997), 155-163.
- [9] R. S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Math. Vol. 471, Springer-Verlag, Berlin, New York, 1975.
- [10] Peter Li and Luen-Fai Tam, Uniqueness and regularity of proper harmonic maps, II, Indiana Univ. Math. J. 42(2) (1993), 591-635.
- [11] Peter Li and Luen-Fai Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105(1) (1991), 1-46.
- [12] Luen-Fai Tam and Tom Y.-H. Wan, On quasiconformal harmonic maps, Pacific J. Math. 182(2) (1998), 359-383.
- [13] P. Tukia and J. Väisälä, Quasi-conformal extension from dimension n to n + 1, Ann. of Math. (2) 115(2) (1982), 331-348.
- [14] M. Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space, J. Differential Geom. 35 (1992), 643-657.
- [15] Deane Yang, Deforming a map into a harmonic map, Trans. Amer. Math. Soc. 352(3) (2000), 1021-1038.