THE QUASI-SYMMETRIC MAPS

DANTOUMA KAMISSOKO

Département de Mathématiques
Université de Bretagne Occidentale
France

1. Introduction

Suppose that G is a bilipschitz (i.e., quasi-isometric) map of n dimensional hyperbolic space $\mathbb{H}=\mathbb{H}^{n}$ onto itself. We may get such a map, for example, when $n=2$, by starting with a bilipschitz map of compact surfaces $F: \Sigma_{1} \rightarrow \Sigma_{2}$ of genus ≥ 2 equipped with curvature -1 metrics. Then, since \mathbb{H} is the universal cover of both Σ_{1} and Σ_{2}, the surface map F lifts to a bilipschitz map of \mathbb{H} to itself.

Using the Poincaré disk model

$$
\left(\mathbb{B}^{n},\left(1-|x|^{2}\right)^{-2} d x^{2}\right)
$$

we see that a bilipschitz G will extend continuously to the (ideal) boundary sphere
Received February 6, 2019; Revised February 26, 2019
2010 Mathematics Subject Classification: 30C62, 30C70, 58E20.
Keywords and phrases: quasi-symmetric, geodesic, bilipschitz map, hyperbolic space, quasi-conformal.
© 2019 Pioneer Scientific Publisher
$\mathbb{S}=\mathbb{S}^{n-1}=\partial \mathbb{H}$ at ∞. However, here the boundary map $g=G \mid \mathbb{S}$ will not necessarily be Lipschitz. In fact, it almost never is for lifts of surface maps. However, it is quasi-conformal for $n \geq 3$ and quasi-symmetric for $n=2$. A homeomorphism $g: \mathbb{S} \rightarrow \mathbb{S}$ is quasi-conformal (quasi-symmetric) if

$$
\Lambda_{g} \equiv \sup _{x \in \mathbb{S}} \lim _{r \downarrow 0} \sup \frac{\sup _{y \in \mathbb{S} \cap \partial \mathbb{B}_{r}(x)}|g(x)-g(y)|}{\inf _{z \in \mathbb{S} \cap \partial \mathbb{B}_{r}(x)}|g(x)-g(y)|}<\infty .
$$

In the quasi-symmetric case with $\mathbb{S}=\mathbb{S}^{1} \subset \mathbb{C}$, this simply says that the distance ratios

$$
\frac{\left|g(z)-g\left(z e^{i \theta}\right)\right|}{\left|g\left(z e^{-i \theta}\right)-g(z)\right|}
$$

are bounded above and below independent of $z \in \mathbb{S}^{1}$ and $\theta \in \mathbb{R}$. Note that bilipschitz maps are automatically quasi-conformal (quasi-symmetric). However, for regularity, quasi-conformal (quasi-symmetric) maps are generally only Hölder continuous to some power less than 1 depending on Λ_{g}.

Conversely to the above discussion, Beurling and Ahlfors [4], Douady and Earle [6], and Tam and Wan [12] proved that any quasi-conformal (quasi-symmetric) map of \mathbb{S} admits a continuous extension to \mathbb{H} that is bilipschitz on \mathbb{H}. These results suggested the following question by Royden and others.

Does any quasi-conformal (quasi-symmetric) map g of \mathbb{S} admit a harmonic map extension to \mathbb{H} ?

While the general problem is still open, harmonic extensions were first constructed by P . Li and L.-F. Tam [10], [11] under some assumptions on smoothness of g and a pointwise lower bound on the ∇_{g} (see also Akutagawa [1]). Some non-uniqueness examples were found by Wolf [14] and Li and Tam [10], [11]. Harmonic self-maps of \mathbb{H}^{2} were studied via their Hopf differentials by Tukia and Väisälä [13]. A few years ago, we worked out the following result [8] (see also different, independent recent proofs by Deane Yang [15]).

Theorem 1. The set of all quasi-conformal (quasi-symmetric) maps of \mathbb{S} admitting an extension to a bilipschitz harmonic map of \mathbb{H} is open.
(Here, we say that a sequence $g_{i} \rightarrow g$ if $\Lambda_{g_{i} \circ g^{-1}} \rightarrow 1$).
Corollary 1. All quasi-conformal (quasi-symmetric) maps of \mathbb{S} near the identity are harmonically extendible.

For the case $n=2$, this Corollary was obtained several years ago by C. Earle and S. Fowler [7] using implicit function theorem methods. Proof of Theorem. (For details, see [8]) We start with a bilipschitz harmonic map $\mathbb{H}_{0}: \mathbb{H} \rightarrow \mathbb{H}$ and consider small quasi-conformal (quasi-symmetric) perturbations of the boundary map $h_{0} \equiv \mathbb{H}_{0} \mid \mathbb{S}$. Specifically, we will consider, for $\delta>0$, a map $g=g_{s}$ with $\Lambda_{g \circ h_{0}^{-1}} \leq \delta$. Using one of the constructions of [2], [4], [6] or [12], we extend $g \circ h_{0}^{-1}$ to a map $F=F_{\delta}$ of \mathbb{H} with

$$
\begin{equation*}
\sup _{\mathbb{H}} d(I d, F)+\sup _{\mathbb{H}}\|I d-d F\| \leq \varepsilon=\varepsilon(\delta), \tag{1}
\end{equation*}
$$

where $d(.,)=.\operatorname{dist}_{\mathbb{H}}(.,$.$) and here, and in the following, \varepsilon(\delta)$ will denote some (changing) positive function of δ which approaches 0 as $\delta \mid 0$. Then,

$$
G=G_{\delta} \equiv F \circ H_{0}
$$

is a bilipschitz extension of g that is bilipschitz close (as in (1)) to H_{0}. Our goal is to obtain, for small δ a bilipschitz extension H of g which is also harmonic, that is, has tension

$$
\tau(H)=0 .
$$

We first observe that, in addition to (1), we may also assume that

$$
\begin{equation*}
F \text { is } \mathcal{C}^{2} \text { and } \tau(F) \leq \varepsilon=\varepsilon(\delta) \tag{2}
\end{equation*}
$$

To see this, we may, for example, divide \mathbb{H} into compact isometric n-dimensional blocks, as in a standard dyadic decomposition of the upper half space model with totally geodesic faces. For any one such block B we may, by (1), associate a hyperbolic isometric F_{B} so that, for all $b \in B$,

$$
d\left(F(b), F_{B}(b)\right)+\left\|(d F)_{b}-\left(d F_{B}\right)_{b}\right\| \leq \varepsilon=\varepsilon(\delta)
$$

On a fixed-size η tubular neighborhood of $n-1$ skeleton we may locally smoothly interpolate between the isometries associated with the blocks of the adjacent faces. One may do this by inductively crossing the $n-1$, then $n-2, \ldots, 0$ cells. One eventually gets the smooth map $\tilde{F}: \mathbb{H} \rightarrow \mathbb{H}$ satisfying $\|\tau(\tilde{F})\|<C \varepsilon / \eta^{n}$ and replace F by \tilde{F} to get (2).

Since H_{0} is harmonic and bilipschitz, it now follows from (1) and (2) that

$$
\begin{equation*}
\tau(G)=\tau\left(F \circ H_{0}\right) \leq \varepsilon=\varepsilon(\delta) \tag{3}
\end{equation*}
$$

where $\mu\left(H_{0}\right)=\min _{|v|=1}\left|d H_{0}(v)\right|$.

To find the desired harmonic H, we consider integer radius balls $\mathbb{B}_{1}, \mathbb{B}_{2}, \ldots$ about some fixed point in \mathbb{H} and use [8] to choose, for each $m=1,2, \ldots$, a harmonic map

$$
H_{m}: \mathbb{B}_{m} \rightarrow \mathbb{H} \quad \text { with } \quad H_{m}=G \quad \text { on } \quad \partial \mathbb{B}_{m}
$$

We want to show that for δ sufficiently small, H_{m} converges as $m \rightarrow \infty$ to the desired H. We use the following:

Lemma 1. If S and T are two nowhere-coinciding \mathcal{C}^{2} maps from a region $\Omega \subset \mathbb{H}$ to \mathbb{H}, then the function

$$
Q \equiv \cosh d(S(.), T(.))-1
$$

satisfies

$$
\begin{equation*}
\Delta Q \geq Q\left(\left[\min _{|v|=1} d S(v)\right]^{2}+\left[\min _{|v|=1} d T(v)\right]^{2}\right)-(|\tau(S)|+|\tau(T)|) \sinh d(S, T) \tag{5}
\end{equation*}
$$

The proof is a calculation which we will sketch later. For now, we use the Lemma to complete the proof of the Theorem.

Defining $Q_{m}=\cosh d\left(G, H_{m}\right)-1$, we deduce from (3), (4), (5), and the harmonicity of H_{m} that

$$
\Delta Q_{m} \geq Q_{m}\left(\mu\left(H_{0}\right)(1-\varepsilon)+0\right)-(\varepsilon+0) \tanh d\left(G, H_{m}\right)\left(Q_{m}-1\right)
$$

on \mathbb{B}_{m}. Since Q_{m} vanishes on $\partial \mathbb{B}_{m}$, there a maximum point $a \in \mathbb{B}_{m}$ for Q_{m}. Unless $Q_{m} \equiv 0$, we have there that

$$
0 \geq \Delta Q_{m}(a) \geq\left(\mu\left(H_{0}\right)(1-\varepsilon)-\varepsilon\right) Q_{m}(a)-\varepsilon
$$

hence

$$
\sup _{\mathbb{B}_{m}} Q_{m}=Q_{m}(a) \leq \frac{\varepsilon}{\mu\left(H_{0}\right)(1-\varepsilon)-\varepsilon}<\infty
$$

independent of m. In any case, since G is Lipschitz, the diameter of the image $H_{m}(B)$ of any unit ball in B in \mathbb{B}_{m} is uniformly bounded, independent of m. The gradient estimate of Cheng [5] and Baird and Kamissoko [3] Lemma 2.1 then gives the bound

$$
\sup _{\mathbb{B}_{m-1}}\left|\nabla H_{m}\right| \leq C=C\left(H_{0}, \delta\right)<\infty,
$$

independent of m. The Ascoli-Arzela theorem allows us to find a subsequence of H_{m} converging uniformly on compacts to a harmonic map $H: \mathbb{H} \rightarrow \mathbb{H}$ which is still at bounded distance from G. It follows that H has the same asymptotic boundary values as G, that is, $H|\mathbb{S}=G| \mathbb{S}=g$, which completes the proof of the theorem.

Sketch of proof of Lemma. First, we compute for a \mathbb{C}^{2} map $w: M \rightarrow N$ of Riemannian manifolds and a smooth function $f: N \rightarrow \mathbb{R}$, the pointwise formula

$$
\begin{equation*}
\Delta(f \circ w)=\operatorname{tr}_{\left\{w * e_{\alpha}\right\}} \text { Hessf }+\langle\nabla f, \tau(w)\rangle_{N} \tag{6}
\end{equation*}
$$

where the trace of the Riemannian Hessiaan is taken with respect to the push-forward $\left\{w * e_{\alpha}\right\}$ of an orthonormal frame $\left\{e_{\alpha}\right\}$.

For each point $x \in \Omega$, we choose an orthonormal basis $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of $\operatorname{Tan}_{S(x)}$ so that σ_{1} is the initial velocity of the geodesic γ going from $S(x)$ to $T(x)$. Then we parallel translate along γ to get the basis $\left\{\tau_{1}, \ldots, \tau_{n}\right\}$ of $\operatorname{Tan}_{T(x)}$. With respect to the basis $\left(\sigma_{1}, 0\right), \ldots,\left(\sigma_{n}, 0\right),\left(0, \tau_{1}\right), \ldots,\left(0, \tau_{n}\right) \quad$ of $\operatorname{Tan}_{S(x)} \times \operatorname{Tan}_{S(x)}$, $(\text { Hess } \cosh d)_{(S(x), T(x))}$ is represented by the matrix

$$
A \equiv(\cosh d) I d_{2 n \times 2 n}+\tilde{A}
$$

where \tilde{A} has only nonzero entries $-\cosh d$ at $\left(\left(\sigma_{1}, 0\right),\left(0, \tau_{1}\right)\right)$ and $\left(\left(0, \tau_{1}\right),\left(\sigma_{1}, 0\right)\right)$ and -1 at $\left(\left(\sigma_{i}, 0\right),\left(0, \tau_{i}\right)\right)$ and $\left(\left(0, \tau_{i}\right),\left(\sigma_{i}, 0\right)\right)$ for $i=2, \ldots, n$. So, by (6) with $w=(S, T)$ and $f=\cosh d$,

$$
\begin{aligned}
\Delta Q= & \sum_{\alpha}\left\langle A \sum_{i}\left[\left\langle d S\left(e_{\alpha}\right), \sigma_{i}\right\rangle \sigma_{i}+\left\langle d T\left(e_{\alpha}\right), \tau_{i}\right\rangle \tau_{i}\right]\right. \\
& \left.\sum_{i}\left[\left\langle d S\left(e_{\alpha}\right), \sigma_{i}\right\rangle \sigma_{i}+\left\langle d T\left(e_{\alpha}\right), \tau_{i}\right\rangle \tau_{i}\right]\right\rangle+\left\langle\nabla Q,(\tau(S), \tau(T))_{(S, T)}\right\rangle \\
= & (\cosh d)\left(\left\langle\nabla S, \sigma_{1}\right\rangle-\left\langle\nabla T, \tau_{1}\right\rangle\right)^{2} \\
& +(\cosh d-1) \sum_{i=2}^{n}\left(\left\langle\nabla S, \sigma_{i}\right\rangle^{2}+\left\langle\nabla T, \tau_{i}\right\rangle^{2}\right)+\left\langle\nabla Q,(\tau(S), \tau(T))_{(S, T)}\right\rangle \\
\geq 0 & +Q \sum_{i=2}^{n}\left(\left\langle\nabla S, \sigma_{i}\right\rangle^{2}+0\right)-\sinh d(S, T)(|\tau(S)|+|\tau(T)|),
\end{aligned}
$$

where $\left\langle\nabla S, \sigma_{1}\right\rangle$ refers to the component of $\sum_{a} d S\left(e_{\alpha}\right)$ in the direction σ_{1}, etc. The last inequality clearly implies inequality (5).

References

[1] Kazuo Akutagawa, Harmonic diffeomorphisms of the hyperbolic plane, Trans. Amer. Math. Soc. 342(1) (1994), 325-342.
[2] Paul Baird, A class of three-dimensional Ricci solitons, Geometry and Topology 13(2) (2009), 979-1015.
[3] Paul Baird and Dantouma Kamissoko, Unique continuation of semi-conformality for a harmonic mapping onto a surface, Manuscripta Math. 128(1) (2009), 69-75.
[4] A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
[5] Shiu Yuen Cheng, Liouville theorem for harmonic maps, Proc. Symp. Pure Math. 36 (1980), 147-151.
[6] Adrien Douady and Clifford J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157(1-2) (1986), 23-48.
[7] C. J. Earle and S. Fowler, Private communication.
[8] Robert Hardt and Michael Wolf, Harmonic extensions of quasiconformal maps to hyperbolic space, Indiana Univ. Math. J. 46(1) (1997), 155-163.
[9] R. S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Math. Vol. 471, Springer-Verlag, Berlin, New York, 1975.
[10] Peter Li and Luen-Fai Tam, Uniqueness and regularity of proper harmonic maps, II, Indiana Univ. Math. J. 42(2) (1993), 591-635.
[11] Peter Li and Luen-Fai Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105(1) (1991), 1-46.
[12] Luen-Fai Tam and Tom Y.-H. Wan, On quasiconformal harmonic maps, Pacific J. Math. 182(2) (1998), 359-383.
[13] P. Tukia and J. Väisälä, Quasi-conformal extension from dimension n to $n+1$, Ann. of Math. (2) 115(2) (1982), 331-348.
[14] M. Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space, J. Differential Geom. 35 (1992), 643-657.
[15] Deane Yang, Deforming a map into a harmonic map, Trans. Amer. Math. Soc. 352(3) (2000), 1021-1038.

